Analysis of interactions of the adhesion molecule TAG-1 and its domains with other immunoglobulin superfamily members.

نویسندگان

  • Ourania Pavlou
  • Kostas Theodorakis
  • Julien Falk
  • Michael Kutsche
  • Melitta Schachner
  • Catherine Faivre-Sarrailh
  • Domna Karagogeos
چکیده

Cell adhesion molecules of the immunoglobulin superfamily promote cell aggregation and neurite outgrowth via homophilic and heterophilic interactions. The transient axonal glycoprotein TAG-1 induces cell aggregation through homophilic interaction of its fibronectin repeats. We investigated the domains responsible for the neurite outgrowth promoting activity of TAG-1 as well as its interactions with other cell adhesion molecules. Binding experiments with Fc-chimeric proteins revealed that TAG-1 interacts with L1, NrCAM, and F3/contactin. The membrane-associated as opposed to the soluble form of TAG-1 behaves differently in these assays. We demonstrate that both the immunoglobulin as well as the fibronectin domains promote neurite outgrowth when used as substrates. Furthermore we investigated the putative role of L1 and NrCAM as the neuronal TAG-1 receptors mediating neurite extension. DRG neurons from L1-deficient mice were found to extend neurites on TAG-1 substrates and blocking NrCAM function did not diminish the TAG-1-dependent neurite outgrowth. These results indicate that neither L1 nor NrCAM are required for TAG-1-elicited neurite outgrowth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation.

Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its...

متن کامل

Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons

Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF re...

متن کامل

Residues on both faces of the first immunoglobulin fold contribute to homophilic binding sites of PECAM-1/CD31.

CD31 (PECAM-1) is a member of the immunoglobulin superfamily whose extracellular domain is comprised of six immunoglobulin-like domains. It is widely expressed on endothelium, platelets, around 50% of lymphocytes, and cells of myeloid lineage. CD31 has been shown to be involved in interendothelial adhesion and leukocyte-endothelial interactions, particularly during transmigration. CD31-mediated...

متن کامل

Engineering of single Ig superfamily domain of intercellular adhesion molecule 1 (ICAM-1) for native fold and function.

The immunoglobulin (Ig) superfamily is one of the largest families in the vertebrate genome, found most frequently in cell surface molecules. Intercellular adhesion molecule-1 (ICAM-1) contains five extracellular Ig superfamily domains (D1-D5) of which the first domain, D1, is the binding site for the integrin lymphocyte function-associated antigen-1 (LFA-1) and human rhinovirus. Despite the mo...

متن کامل

Cryo-electron tomography of homophilic adhesion mediated by the neural cell adhesion molecule L1.

The neural cell adhesion molecule L1 participates in homophilic interactions important for axon guidance and neuronal development. The structural details of homophilic adhesion mediated by L1 and other immunoglobulin superfamily members containing an N-terminal horseshoe arrangement of four immunoglobulin-like domains are unknown. Here we used cryo-electron tomography to study liposomes to whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2002